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Abstract

The dissipative shallow-water equations (SWE) possess both real-world applica-

tion and extensive analysis in theoretical partial differential equations. This analysis

is dominated by modeling the dissipation as diffusion, with its mathematical repre-

sentation being the Laplacian. However, the usage of the biharmonic as a dissipa-

tive operator by oceanographers and atmospheric scientists and its underwhelming

amount of analysis indicates a gap in SWE theory. In order to provide rigorous

mathematical justification for the utilization of these equations in simulations with

real-world implications, we extend an energy method utilized by Matsumura and

Nishida for initial value problems relating to the equations of motion for compress-

ible, viscous, heat-conductive fluids ([6], [7]) and applied by Kloeden to the diffusive

SWE ([4]) to prove global time existence of classical solutions to the biharmonic

SWE. In particular, we develop appropriate a priori growth estimates that allow one

to extend the solution’s temporal existence infinitely under sufficient constraints on

initial data and external forcing, resulting in convergence to steady-state.
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List of Symbols

Symbols

f The spatial average of an integrable function f over Ω is given

by

f “
1

|Ω|

ż

Ω

fpxqdx.

L2pΩq This denotes the space of measurable functions that are square

integrable over Ω, equipped with the norm

‖f‖L2pΩq “

¨

˝

ż

Ω

fpxq2 dx

˛

‚

1
2

.

HkpΩq This denotes the Sobolev space of functions defined over Ω with

k weak derivatives belonging to L2pΩq. This space is equipped

with the norm

‖f‖k “

˜

k
ÿ

l“0

∥∥Dlf
∥∥2

L2pΩq

¸
1
2

,

where Dlf represents the lth generalized derivative of f . We uti-

lize the notation HkpΩq, instead of W k,2pΩq, since this function

space is a Hilbert Space.

Cjp0, T ;HkpΩqq This denotes the function space with elements

f : r0, T s Ñ HkpΩq whom are j times continuously differentiable

in t.

L2p0, T ;HkpΩqq This denotes the function space of measurable functions

iv



f : r0, T s Ñ HkpΩq whose norm ‖fptq‖k is square integrable

over r0, T s.

Ck,αpΩq This space represents the space of functions that are k times

continuously differentiable with the kth partial derivatives being

Hölder continuous over Ω (the closure of Ω) with Hölder coeffi-

cient 0 ă α ď 1. In this paper, we will require that 0 ă α ă 1

(this is dictated by the Sobolev emeddings present in Theorem

5.4 in [1]). If the k is dropped from the notation, it is understood

that k “ 0. This space is equipped with the norm

‖f‖Ck,αpΩq “
k
ÿ

l“0

∥∥Dlf
∥∥
CαpΩq

,

where

∥∥Dlf
∥∥
CαpΩq

“ sup
xPΩ

|fpxq| ` sup
x,yPΩ,x‰y

|Dlfpxq ´Dlfpyq|

|x´ y|α
.

Note When our functions take values in R2, then interpret the L2 norm

as

‖f‖L2pΩq “

¨

˝

ż

Ω

|fpxq|2 dx

˛

‚

1
2

,

where | ¨ | denotes the Euclidean 2-norm. All of the other spaces

are adapted similarly.
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1

Introduction

1.1 Background

The Shallow Water Equations (SWE) constitute a prevalent system of hyper-

bolic/parabolic, non-linear partial differential equations in fluid dynamics. The SWE

are derived from the conservation of mass and linear momentum, in the case where

the velocity of the flow varies negligibly in the vertical direction, allowing for a hy-

drostatic approximation. Since scenarios where the horizontal length scale greatly

exceeds the vertical length scale arise commonly in nature (particularly in the atmo-

sphere and ocean), these equations possess practical usage in the atmospheric science

and oceanography communities.

In order to mathematically characterize the SWE from a realistic perspective,

first let Ω Ď R2 be a rectangular domain. Define the fluid flow over Ω by

u : Ω ˆ r0,`8q Ñ R2 and the height field h : Ω ˆ r0,`8q Ñ R. If we associate x

with the east-west direction and y with the north-south direction, then the shallow

water equations can be given, as in Jones ([3]), by

$

&

%

ht `∇ ¨ phuq “ 0

ut ` pu ¨∇qu´ νDLu “ ´g
1∇h´ fpẑ ˆ uq ` F.

Here, f represents the Coriolis force (which we take to vary linearly with latitude),
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g1 is reduced gravity, ν is a viscosity parameter, DL is a dissipative operator (we

understand differential operators acting on u component-wise), F is external forcing,

and ẑ is a unit vector in the vertical direction. The external forcing takes the form

F “ p´τ cospπu1{Lyq, 0q, where Ly is the north-south basin size and τ is wind stress.

Take u “ 0 initially, with Dirichlet boundaries. (We will take various simplifications

of these equations in subsequent sections of this paper.)

1.2 Biharmonic Vs. Laplacian

As mentioned previously, the SWE (particularly of the above variety) bear sub-

stantial geophysical relevance. The most important application of these equations

are numerical simulations. One of the most common representations of the dissi-

pation is diffusion, given by the Laplacian, ∇ph∇uq. There are also multiple other

relevant operators, such as the biharmonic operator, which we will take to be given by

∇2ph∇uq. The biharmonic is beneficial in numerical simulations, since it “smooths”

differently than the Laplacian. Another viable way to modify the SWE is through a

dispersive modification, via the use of the α-model (see [10]).

If one considers the standard one-dimensional heat equation with the Laplace

versus biharmonic operators, both equipped with Dirichlet boundaries, the spectrum

of the biharmonic operator is proportional to n4, whereas the Laplacian’s is propor-

tional to n2. This means that the biharmonic version will dissipate slower than the

Laplacian at first, then much faster for larger n. From a numerical perspective,

the biharmonic’s spectrum can be viewed as indicating that it neglects to damp so-

lutions until the wave numbers becomes large. This is highly beneficial, since the

biharmonic refrains from artificially damping solutions at small scales and heavily

damps the large wave numbers that threaten to blow up the simulation, with the

large-scale dynamics already being resolved by the grid (see [2],[5],[9]). This makes

it ideal for scenarios such as large-scale eddy simulations.

On the following page, we have a side-by-side comparison numerical solutions of

the two operators for the previously-described version of the SWE, with Earth-like

parameters. The fluid moves tangentially to the height contours, which emphasizes

how it is influenced by the gyres that are generated from the β´plane approximation.
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Note how the biharmonic produces a much “sharper” flow, which underscores the

aforementioned smoothing.
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Figure 1.1: Height Field Contours of Diffusive and Biharmonic SWE on β´plane;
Scheme: MPDATA
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In short, while the Laplacian is a common dissipative operator among oceanog-

raphers and atmospheric scientists, there are numerous other operators with legiti-

mate numerical bases, such as the biharmonic. However, theoretical analysis of these

equations, which help provide justification for the aforementioned numerical simu-

lations, is dominated by the Laplacian. There is a sizable gap in the theory about

alternative operators. In this paper, we aim to establish justification for the usage of

the biharmonic shallow water equations in numerical simulations under initial data

and forcing contraints by proving the global existence of classical solutions. This

has been done previously by P.E. Kloeden (see [4]) for the Laplacian, via an energy

method developed by A. Matsumura and T. Nishida (see [6], [7]) for more general

fluids. We will follow a similar approach to [4], avoiding the complicated boundary

estimates present in [6], [7].
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2

Mathematical Setting

As mentioned previously, we will make various modifications to the previously-

described SWE. One such modification is that we will take Ω “ p0, 1q ˆ p0, 1q,

Another is that we will consider doubly-periodic flows, allowing us to ascribe periodic

boundaries to our system. These conditions establish integration by parts as a viable

strategy when performing energy estimates. Finally, while the biharmonic operator

is often taken to be ∇2ph∇2uq, we will take it to be ∇4u, which we will discuss

later. By non-dimensionalizing and taking the forcing φpxq as being produced by a

potential V : Ω Ñ R given by ´∇V pxq “ φpxq, we obtain the following brand of

the SWE:
$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

ht `∇ ¨ phuq “ 0

ut ` pu ¨∇qu` λh´1∇4u`∇h “ φ

u “ 0

hpx, tq ą 0

upx, 0q “ u0pxq

hpx, 0q “ h0pxq,

(2.1)

all over Ω, along with the previously-mentioned periodic boundary conditions (let

these conditions be contained in the label (2.1), as well). Here, λ P R` is the viscosity

parameter associated with the biharmonic operator, and h´1 :“ 1
h

(this is a slight

abuse of notation used for convenience). The additional conditions present in the
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above are a positivity constraint on the height and a zero-average condition on the

velocity (again, both over Ω). The steady-state solutions ûpxq and ĥpxq of (2.1)

solve the system
$

&

%

∇ ¨ pĥûq “ 0

pû ¨∇qû` λĥ´1∇4û`∇ĥ “ φ
(2.2)

with analogous conditions as in (2.1) (again, let the conditions be contained in the

label (2.2)).

Remark 2.1. One can see that choosing the forcing to be produced by a potential

allows us to obtain a trivial steady-state for u. Generalizing the forcing obfuscates

the uniqueness of the steady-state equations significantly. 4

Remark 2.2. One can show that the positivity constraint carries over from (2.1) to

(2.2), under constraints on the forcing. Indeed, let h0 P R` and V be an arbitrary

potential. Define ĥpxq “ h0 ` V ´ V pxq. By an application of the embedding of

H2pΩq into CαpΩq, given by [1] (Theorem 5.4) and the Poincaré Inequality (see [11]),

we see that

|V pxq ´ V | ď sup
xPΩ
t|V pxq ´ V |u ď C1

∥∥V pxq ´ V ∥∥
2

ď C1C2 ‖DV ‖1 “ C ‖DV ‖1 ,

where C1 depends only Ω, C2 depends only on Ω and p in the Lp-space in question

(for us, p “ 2), and C “ C1C2. Suppose that

‖DV ‖5 ď
h0

4C
“ E1ph0q. (2.3)

Then, in particular,

|V pxq ´ V | ď
h0

4
,

which implies that

|ĥpxq ´ h0| ď
h0

4
,
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or, by the triangle inequality,

0 ă
3h0

4
ď ĥpxq,

for all x P Ω, which shows that ĥpxq is positive over Ω.

From here, we can see that, under the above constraints, a pair pĥ, ûq of the

form ph0 ` V ´ V pxq, 0q solves (2.2), where ĥ “ h0. We will show uniqueness in the

subsequent section. 4

Our main result that we shall prove is the following theorem.

Theorem 2.1. (Global Solution Existence) Let h0,u0, and V be doubly-periodic func-

tions, where h0 P H
5pΩq, pu0qj P H

6pΩq for j “ 1, 2, V P H6pΩq, and h0 ą 0 over Ω.

Then, δ ą 0 exists so that if

∥∥h0 ´ h0

∥∥
5
ď δ, ‖u0‖6 ď δ, ‖DV ‖5 ď δ,

then (2.1) and (2.2) have unique solutions, and

lim
tÑ8

sup
xPΩ
t|hpx, tq ´ ĥpx, tq|, |upx, tq ´ ûpxq|u “ 0, (2.4)

where

ĥpxq “ h0 ` V ´ V pxq

ûpxq “ 0

h´ ĥ P C0
p0,`8;H5

pΩqq X C1
p0,`8;H5

pΩqq

uj P C
0
p0,`8;H6

pΩqq X C1
p0,`8;H2

pΩqq, j “ 1, 2.

(2.5)

Remark 2.3. This δ can be controlled to be as small as necessary by shrinking the

initial data and external forcing. 4

The solutions to both (2.1) and (2.2) are understood to be classical solutions

and continous over Ωˆ r0,`8q, which can be seen from the embedding of Hk`2pΩq

into Ck,αpΩq, (see [1], Theorem 5.4).
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The theorem states the intuitive and deceptively-complicated result that taking

initial data and forcing small enough causes the solution to converge to its steady-

state. As we will see, however, the proof is non-trivial.
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3

Proof of the Main Theorem

The general method of proof is as follows:

1. Prove the uniqueness of steady-state.

2. Perturb our solution about the steady-state.

3. Obtain local existence of the perturbation equation solutions.

4. Prove that we can bound the energy norm (to be discussed shortly) over some

interval by a multiple of the initial energy norm.

5. Prove that we can iteratively extend the interval of existence on our solution

by continually administering the a priori estimate given by our local bounds on the

energy norm.

6. Obtain the asymptotic properties given by (2.4), completing the proof.

Following this outline, we proceed to the first proposition. It is readily seen

that the pair pĥ, ûq given in Theorem (2.1) solves (2.2). It remains to show that this

representation is unique.

Proposition 3.1 (Uniqueness of Steady-State). Let h0 P R` be arbitrary and V pxq P

H6pΩq be a doubly-periodic function satisfying (2.3). Then pĥpxq, ûpxqq, as defined

in Theorem (2.1), are the unique solution to (2.2), where ûj P H
4pΩq for j “ 1, 2.

The standard method of proof for uniqueness results, after obtaining existence,

involves supposing that there are two solutions, taking their difference, obtaining a

new system of PDEs, then showing that the difference is zero. The non-linearity

9



makes this process exceedingly messy and complicated. Instead, we show that the

solution exists, and that it must take one particular form.

Proof of Proposition (3.1). Fix h0, and suppose that V P H6pΩq is defined as in

(2.3). Multiplying the momentum equation in (2.2) by ĥû, then integrating over Ω,

we have

ż

Ω

pĥûq ¨ ppû ¨∇qûq dx` λ
ż

Ω

û ¨∇4û dx`

ż

Ω

pĥûq ¨∇ĥ dx “
ż

Ω

pĥûq ¨ φ dx.

Recalling that that ´∇V “ φ, we can re-write the above as

ż

Ω

pĥûq ¨ ppû ¨∇qûq dx` λ
ż

Ω

û ¨∇4û dx`

ż

Ω

pĥûq ¨∇pĥ` V q dx “ 0.

We will analyze these integrals individually. Recalling that differential operators act

on û component-wise and integrating the first by parts, we obtain that

ż

Ω

pĥûq ¨ ppû ¨∇qûq dx “ 1

2

ż

Ω

pĥûq ¨∇pû ¨ ûq dx

“
1

2

¨

˝

¿

BΩ

pû ¨ ûqĥû ¨ n dx´

ż

Ω

∇ ¨ pĥûqpû ¨ ûq dx

˛

‚,

where n denotes the outward unit normal on Ω. The first term vanishes by the

periodic boundary conditions, and the second term is 0, since ∇ ¨ pĥûq “ 0.

Next, consider the second integral. Integrating by parts again, we have

λ

ż

Ω

û ¨∇4û dx

“ λ

¨

˝

2
ÿ

j“1

¿

BΩ

pûj∇3ûjq ¨ n dx´
2
ÿ

j“1

¿

BΩ

p∇2ûj∇ûjq ¨ n dx`

ż

Ω

p∇2û ¨∇2ûq dx

˛

‚.

The first two terms goes to 0 from the given boundary conditions. We will discuss

the third piece in a moment. Shifting our attention to the third integral temporarily,

10



we will integrate by parts, again:

ż

Ω

pĥûq ¨∇pĥ` V q dx “
¿

BΩ

pĥ` V qĥû ¨ n dx´

ż

Ω

∇ ¨ pĥûqpĥ` V q dx.

For the same reasons as the first integral, this integral is 0. Combining these results,

λ

ż

Ω

p∇2û ¨∇2ûq dx “ 0.

Since λ ‰ 0, it follows that ∇2û “ 0. Multiplying both sides by û and integrating

over the domain,
ż

Ω

û ¨∇2û dx “ 0.

Integrating by parts,

ż

Ω

û ¨∇2û dx “
2
ÿ

j“1

¿

BΩ

pûj∇ûjq ¨ nq dx´ ‖∇û‖2
L2pΩq “ 0.

The first term is 0 from the boundary conditions. The second term implies that

∇û “ 0. Hence, û is constant on Ω. But, we are given that û has zero average on Ω,

and û is continuous. Then, û “ 0. Applying this to the momentum equation yields

that

∇pĥ` V q “ 0.

So, ĥ`V is constant, from which we can conclude that ĥ`V “ h0`V is unique.

Next, we wish to perturb ph,uq about the steady-state solution pĥ, ûq. Define

the perturbation variables ph1,u1q “ ph ´ ĥ,u ´ ûq “ ph ´ ĥ,uq. Re-arranging and

plugging these variables into (2.1), then dropping primes, yields the perturbation

equations:

ht ` u ¨∇h` h0∇ ¨ u “ R0

ut ` λ∇4u`∇h “ R,
(3.1)

11



where

R0 “ ph0 ´ h´ ĥq∇ ¨ u´∇ĥ ¨ u

R “ ´pu ¨∇qu,

with analogous boundary conditions to (2.1) and (2.2) (note that the zero-average

condition carries over, since u1 “ u), as well as an identical initial condition on u

and the initial condition hpx, 0q “ h0pxq´ ĥpxq over Ω. We will refer to the left-hand

sides of (3.1) as L0 and L, respectively.

Remark 3.1. If we did not simplify the operator, the perturbation equations would

be given by

ht ` u ¨∇h` h0∇ ¨ u “ R0

ut ` λ∇4u`∇h “ R,
(3.2)

where

R0 “ ph0 ´ h´ ĥq∇ ¨ u´∇ĥ ¨ u

R “ ´pu ¨∇qu´ 2λ
∇ph` ĥq
ph` ĥq

∇3u´
λ

ph` ĥq
∇2
ph` ĥq∇2u,

with analogous boundary conditions to (2.1) and (2.2), as well as identical initial

condition on u and the initial condition hpx, 0q “ h0pxq ´ ĥpxq over Ω. Since the

first equation is identical, many estimates follow identically to those that will follow.

The differences are the bounds on R, with the primary issue being reducing the order

of differentiation sufficiently. We will attach a key estimate on the term h` ĥ in the

appendix, as well as an example estimate for R, for future work. 4
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The perturbation equation functions live in the function space

X “ X pt1, t2;Eq

“

!

ph,uq;h P C0
pt1, t2;H5

pΩqq X L2
pt1, t2;H5

pΩqq,

ht P C
0
pt1, t2;H5

pΩqq X L2
pt1, t2;H5

pΩqq,

uj P C
0
pt1, t2;H6

pΩqq X L2
pt1, t2;H8

pΩqq,

putqj P C
0
pt1, t2;H2

pΩqq X L2
pt1, t2;H4

pΩqq, j “ 1, 2
)

,

(3.3)

where Nph, u; t1, t2q ď E. The quantity Nph, u; t1, t2q is called the energy norm of

(3.1), and it is defined as

N2
ph,u; t1, t2q “ sup

t1ďτďt2

!

‖hpτq‖2
5 ` ‖hτ pτq‖2

5 ` ‖upτq‖2
6 ` ‖utpτq‖2

2

)

`

t2
ż

t1

`

‖Dhpτq‖2
4 ` ‖hτ pτq‖2

5 ` ‖Dupτq‖2
7 ` ‖uτ pτq‖2

4

˘

dτ.

(3.4)

We will denote it by N2pt1, t2q. This quantity is paramount to proving our result,

since it defines when the norms of all relevant quantities are still bounded.

Remark 3.2. Given the solutions ĥ from (2.2) and h from (3.1), under the condition

(2.3), we can define a bound on the energy norm that admits positivity on the original

height and the original height minus its domain average. Note that, by using the

embedding of H2pΩq into CαpΩq,

|hpx, tq| ď sup
xPΩ

|hpx, tq| ď C ‖hptq‖2 ď C sup
tPr0,T s

‖hptq‖2 ď CNp0, T q,

where C is a time-independent constant coming from the embedding. Suppose that

the energy norm is bounded over r0, T s by
h0

2C
(for justification of this supposition,

see [7]). That is,

Np0, T q ď
h0

2C
“ E2ph0q. (3.5)

13



Then,

|hpx, tq| ď
h0

2
,

from which we can conclude from (2.3) that

|hpx, tq ` ĥ´ h0| ď |hpx, tq| ` |ĥ´ h0| ď
h0

2
`
h0

4
“

3h0

4
,

and

hpx, tq ` ĥpxq ě
h0

4
ą 0. (3.6)

4

With this in mind, we move onto the subsequent requirement for our proof.

Proposition 3.2 (Local Existence). Suppose that ‖DV ‖5 ď E1ph0q and that (3.1)

with the given conditions have a doubly-periodic solution ph,uq on r0, T s such that

Np0, T q ď E2ph0q for some T ě 0. Then, there exist real, positive, T -independent

constants τ, ε0, C0 ą 0, with ε0
a

1` C2
0 ď E2ph0q, so that if NpT, T q ď ε0, then the

perturbation equations have a unique solution on rT, T ` τ s such that

NpT, T ` τq ď C0NpT, T q.

Remark 3.3. In a sense, the above proposition is a conjecture, as it will not be

proven in this paper. However, literature indicates that the result should hold,

as it holds for operators such as the Laplacian. The local existence for the SWE

becomes problematic at scales where the biharmonic damps solutions more than

the Laplacian, so local existence of the Laplacian should signify the analgous result

for the biharmonic. The standard method of proof for a result such as this is an

argument utilizing successive approximations to construct a sequence that is shown

to be Cauchy in an appropriate Banach Space. 4

Next, we obtain a key a priori estimate on the growth of the energy norm.

14



Proposition 3.3 (A Priori Growth Estimate). Suppose that (3.1) with the given

conditions have a doubly-periodic solution ph,uq over r0, T s so that Np0, T q ď E2ph0q

for some T ą 0. Then, there exist positive, real, T -independent constants ε1 and C1,

with ε1 ă ε0 and ε1C1 ď E2ph0q, so that if Np0, T q ď ε1 and ‖DV ‖5 ď ε1, then

Np0, T q ď C1Np0, 0q.

As before, we can make ε1 as small as necessary by shrinking the initial data.

Remark 3.4. The local existence both provides a local solution and a means of

extending the interval of existence of the solution iteratively by the re-initialized

energy norm. In contrast, the a priori growth estimate provides a bound on norm

growth over an entire interval by only the initial data. These come together in a

natural way.

Here is a general overview of the process. Recall that the left-hand sides of (3.1)

are bilinear. We can treat this as an iterative system, where the previous iterate

comes from the right-hand side, allowing us to solve for the left. The initial iterate is

in terms of the initial data and initial energy norm. On the first iteration, quantities

in the system are bounded by our a priori estimates, which are then bounded by the

initial energy norm and the forcing, which are given to be small by the local solution.

On the next iteration, we obtain similar bounds, but these terms are themselves in

terms of the first iteration, namely the initial data. This process continues, and it

works based on the given local existence and sufficient a priori growth estimates. For

details on the argument, see [7]. 4

Given a local solution, we can iteratively extend the interval of existence for our

solution globally, when provided with the above a priori estimate. This proposition is

the crux of our argument, and it will requires numerous estimates on terms present

in the energy norm. In the first lemma, we obtain a Poincaré Inequality on the

height (it is given immediately on u, since u has zero-average- see [11]). On the

second through fifth lemmas, we estimate energy norm quantities in terms of these

quantities and the right-hand side of the perturbation equations. The remaining

lemmas bound the right-hand side quantities, leaving us with sums of energy norm

terms, initial data, and forcing, all of which can be controlled appropriately.

15



Lemma 3.1. h “ 0 and ‖h‖2
L2pΩq ď C ‖Dh‖2

L2pΩq , where C is a time-independent

constant.

Proof of Lemma (3.1). Recall that h denotes the perturbed height. Let us denote

the height in (2.1) by h˚. Integrating the height equation in (2.1) in space, then

again in time, yields that

ż

Ω

h˚px, tq dx´

ż

Ω

h˚px, 0q dx`

t
ż

0

ż

Ω

∇ ¨ ph˚px, τqupx, τqq dxdτ “ 0.

Plugging in h˚ “ h` ĥ, we have that

ż

Ω

hpx, tq dx´

ż

Ω

hpx, 0q dx`

t
ż

0

ż

Ω

∇ ¨ pphpx, τq ` ĥpxqqupx, τqq dxdτ “ 0.

Applying the divergence theorem and our boundary conditions simplifies the above

to
ż

Ω

hpx, tq dx´

ż

Ω

hpx, 0q dx “ 0.

Since
ż

Ω

hpx, 0q dx “

ż

Ω

ph0pxq ´ ĥpxqq dx “ 0,

we have that
ż

Ω

hpx, tq dx “ 0.

So, the perturbation h has zero average. Given this information, a direct application

from [11] (page 157) allows the result to follow.

The next lemma provides an estimate on the norms of the perturbed height field

and its time integral. We will show this lemma in full detail, since various subsequent

lemmas will contain similar arguments as parts of it, which we will omit.
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Lemma 3.2.

‖Dh‖2
4 `

t
ż

0

‖Dhpτq‖2
4 dτ ď C

ˆ

‖Dh0‖2
4 ` ‖Du0‖2

3 `N
3
p0, tq

`

t
ż

0

`

λ ‖Dupτq‖2
7 ` ‖R0pτq‖2

5 ` ‖Rpτq‖2
4

˘

dτ

˙

,

where C is a time-independent constant.

Proof of Lemma (3.2). It suffices to show that

∥∥Dk`1h
∥∥2
`

t
ż

0

∥∥Dk`1hpτq
∥∥2
dτ ď Cp

∥∥Dk`1h0

∥∥2
`
∥∥Dku0

∥∥2
`N3

p0, tq

`

t
ż

0

pλ
∥∥Dk`4upτq

∥∥2
`
∥∥Dk`1R0pτq

∥∥2

`
∥∥DkRpτq

∥∥2
qdτq,

for k “ 0, 1, 2, 3, 4.

We begin by taking a gradient of the Dk of the left-hand side of the h pertur-

bation equation, taking its inner product with the Dk∇h, adding this to the inner

product of the Dk of the left-hand side of the u perturbation equation and Dk∇h,

then integrating in time.

Performing the above, we have that

t
ż

0

ż

Ω

`

Dk
p∇hq ¨Dk

p∇L0 ` Lq
˘

dxdτ

“

t
ż

0

ż

Ω

`

Dk
p∇hq ¨ pDk∇phτ ` u ¨∇h` h0∇ ¨ uqq `Dk

puτ ` λ∇4u`∇hq
˘

dxdτ

“
1

2

ż

Ω

t
ż

0

B

Bt
pDk

p∇hq ¨Dk
p∇hqq dτdx`

t
ż

0

ż

Ω

pDk
p∇hq ¨Dk

p∇hqq dxdτ `
ż ż

p1q

17



“
1

2

∥∥Dk`1h
∥∥2

L2pΩq
´

1

2

∥∥Dk`1h0

∥∥2

L2pΩq
`

t
ż

0

∥∥Dk`1h
∥∥2

L2pΩq
`

ż ż

p1q,

where

ż ż

p1q “

t
ż

0

ż

Ω

`

Dk
p∇hq ¨ pDk

p∇pu ¨∇hq ` h0∇p∇ ¨ uq ` λ∇4u` uτ qq
˘

dxdτ.

Note that

t
ż

0

ż

Ω

`

Dk
p∇hq ¨Dk

p∇L0 ` Lq
˘

dxdτ “

t
ż

0

ż

Ω

`

Dk
p∇hq ¨Dk

p∇R0 `Rq
˘

dxdτ.

Replacing all occurrences of L0 and L by R0 and R, respectively, and re-

arranging a few terms yields

1

2

∥∥Dk`1h
∥∥2

L2pΩq
`

t
ż

0

∥∥Dk`1h
∥∥2

L2pΩq

“
1

2

∥∥Dk`1h0

∥∥2

L2pΩq
`

t
ż

0

ż

Ω

`

p∇pDkR0q ¨D
k
p∇hq `DkR ¨Dk

p∇hq
˘

dxdτ ´

ż ż

p1q

ď
1

2

∥∥Dk`1h0

∥∥2

L2pΩq
`

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

`

p∇pDkR0q ¨D
k
p∇hq `DkR ¨Dk

p∇hq
˘

dxdτ ´

ż ż

p1q
ˇ

ˇ

ˇ

ď
1

2

∥∥Dk`1h0

∥∥2

L2pΩq
`

t
ż

0

ż

Ω

ˇ

ˇDk
p∇hq

ˇ

ˇ

ˆ

ˇ

ˇDk
p∇R0q

ˇ

ˇ`
ˇ

ˇDk
p∇Rq

ˇ

ˇ

`
ˇ

ˇDk
ph0∇p∇ ¨ uq ` λ∇4uq

ˇ

ˇ

˙

dxdτ `
ˇ

ˇ

ˇ

t
ż

0

ż

Ω

Dk
p∇hq ¨Dk

p∇pu ¨∇hqq dxdτ
ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

Dk
p∇hq ¨Dkuτ dxdτ

ˇ

ˇ

ˇ
.

We will hereafter refer to the last two integrals above as I1 and I2, respectively.
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Applying Young’s Inequality (with ε ą 0 arbitrary), we have that, in particular,

1

2

∥∥Dk`1h
∥∥2

L2pΩq
`

t
ż

0

∥∥Dk`1h
∥∥2

L2pΩq

ď
1

2

∥∥Dk`1h0

∥∥2

L2pΩq
` 2ε

t
ż

0

ż

Ω

|Dk
p∇hq|2 dxdτ

`
1

2ε

t
ż

0

ż

Ω

`

|Dk
p∇R0q|

2
` |DkR|2 ` |h0D

k
p∇p∇ ¨ uqq|2 ` |λDk∇4u|2

˘

dxdτ ` I1 ` I2

ď
1

2

∥∥Dk`1h0

∥∥2

L2pΩq
` 2ε

t
ż

0

∥∥Dk`1h
∥∥2

L2pΩq
dτ

`
1

2ε

t
ż

0

´∥∥Dk`1R0

∥∥2

L2pΩq
`
∥∥DkR

∥∥2

L2pΩq
` h0

∥∥Dk`2u
∥∥2

L2pΩq
` λ

∥∥Dk`4u
∥∥2

L2pΩq

¯

dτ

` I1 ` I2.

(3.7)

Before proceeding, we need estimates on I2 and I2. Namely, we will demonstrate

that

I1 “

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

Dk
p∇hq ¨Dk

p∇pu ¨∇hqq dxdτ
ˇ

ˇ

ˇ
ď K1N

3
p0, tq

and

I2 “

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

Dk
p∇hq ¨Dk

puτ q dxdτ
ˇ

ˇ

ˇ
ď ε

∥∥Dk`1h
∥∥2

L2pΩq
`
K2

ε

`
∥∥Dk`1h0

∥∥2

L2pΩq

`
∥∥Dku0

∥∥2

L2pΩq
`
∥∥Dku

∥∥2

L2pΩq

˘

`K3

t
ż

0

´∥∥Dkupτq
∥∥2

1
`
∥∥Dk`1R0pτq

∥∥2

L2pΩq

¯

dτ

`K4N
3
p0, tq,

where ε ą 0 comes from applying Young’s Inequality and K1, K2, K3, K4 are time-
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independent constants.

We apply the Leibniz Rule to I1:

I1 ď

k
ÿ

l“0

ˆ

k

l

˙

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

`

Dk
p∇hq ¨Dk´l∇hDl

p∇uq `Dk
p∇hq ¨DluDk´l

p∇2hq
˘

dxdτ
ˇ

ˇ

ˇ

ď

k
ÿ

l“0

ˆ

k

l

˙

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

ˆ

sup
xPΩ

|Dl`1u|Dk
p∇hqDk´l∇h` sup

xPΩ
|Dlu|Dk

p∇hqDk´l
p∇2hq

˙

dxdτ
ˇ

ˇ

ˇ

Next, using Young’s Inequality with ε “ 1,

k
ÿ

l“0

ˆ

k

l

˙

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

ˆ

sup
xPΩ

|Dl`1u|Dk
p∇hqDk´l∇h` sup

xPΩ
|Dlu|Dk

p∇hqDk´l
p∇2hq

˙

dxdτ
ˇ

ˇ

ˇ

ď

k
ÿ

l“0

ˆ

k

l

˙

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

`

sup
xPΩ

|Dl`1u|ppDk
p∇hq ¨Dk

p∇hqq{2` pDk´l
p∇hq ¨Dk´l

p∇hqq{2q

` sup
xPΩ

|Dlu|ppDk
p∇hq ¨Dk

p∇hqq{2` pDk´l
p∇2hq ¨Dk´l

p∇2hqq{2q
˘

dxdτ
ˇ

ˇ

ˇ

ď

k
ÿ

l“0

ˆ

k

l

˙

t
ż

0

ˆ

sup
xPΩ

|Dl`1u|
` ∥∥Dk`1h

∥∥2

L2pΩq
{2`

∥∥Dk´1`1h
∥∥2

L2pΩq
{2
˘

` sup
xPΩ

|Dlu|
`
∥∥Dk`1h

∥∥2

L2pΩq
{2`

∥∥Dk´1`2h
∥∥2

L2pΩq
{2
˘

˙

dτ.

Utilizing the Sobolev embedding of H2pΩq into CαpΩq, we know that a constant A

exists for which supxPΩ |D
l`1u| ď A

∥∥Dl`1u
∥∥

2
. Similarly, a constant B exists for

which supxPΩ |D
lu| ď B

∥∥Dlu
∥∥

2
. So, exercising the above and taking the supremum

over t,

k
ÿ

l“0

ˆ

k

l

˙

t
ż

0

ˆ

sup
xPΩ

|Dl`1u|
`
∥∥Dk`1h

∥∥2

L2pΩq
{2`

∥∥Dk´1`1h
∥∥2

L2pΩq
{2
˘

` sup
xPΩ

|Dlu|
`
∥∥Dk`1h

∥∥2

L2pΩq
{2`

∥∥Dk´1`2h
∥∥2

L2pΩq
{2
˘

˙

dτ

ď

k
ÿ

l“0

ˆ

k

l

˙ˆ

A sup
τPr0,ts

∥∥Dl`1u
∥∥

2

t
ż

0

`
∥∥Dk`1h

∥∥2

L2pΩq
`
∥∥Dk´l`1h

∥∥2

L2pΩq

˘

dτ
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`B sup
τPr0,ts

∥∥Dlu
∥∥

2

t
ż

0

`∥∥Dk`1h
∥∥2

L2pΩq
`
∥∥Dk´l`2h

∥∥2

L2pΩq
dτ
˘

˙

ď K1Np0, tqN
2
p0, tq “ K1N

3
p0, tq,

where K1 is a time-independent constant.

The above is valid of all combinations of l and k, where k goes up to 4, except

for the cases where pl, kq “ p0, 4q, p4, 4q. When pl, kq “ p0, 4q, the second term (the

problem term) in the Leibniz rule becomes

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

D4
p∇hq ¨ uD4

p∇2hq dxdτ
ˇ

ˇ

ˇ
“

1

2

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

∇ ¨ pD4
p∇hqD4

p∇hqq ¨ u dxdτ
ˇ

ˇ

ˇ
.

Integrating by parts, we have that

1

2

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

∇pD4
p∇hq ¨D4

p∇hqq ¨ u dxdτ
ˇ

ˇ

ˇ

“
1

2

ˇ

ˇ

ˇ

t
ż

0

ż

BΩ

pDk
p∇hqq2u ¨ n dxdτ ´

t
ż

0

ż

Ω

pDk
p∇hq ¨Dk

p∇hqq∇ ¨ u dxdτ
ˇ

ˇ

ˇ
,

where n denotes the outward unit normal over Ω. The integration over BΩ vanishes

from the periodic boundaries. Performing the same supremum process as done earlier

ensures that we obtain a supxPΩ |Du|, without violating how many derivatives we are

allowed on h.

When pl, kq “ p4, 4q, we encounter a problem on the term supτPr0,ts
∥∥Dl`1u

∥∥
2
.

In order to assuage this issue, which comes from the first term in the Leibniz Rule,

we pull out the supremum supx |Dh|, and we apply Young’s Inequality to D4p∇hq
and D4p∇uq, then continue in the same manner. Thus, the estimate on I1 holds.

Next, we prove the estimate on I2. Integrating by parts in t and utilizing the

triangle inequality yields
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ˇ

ˇ

ˇ

t
ż

0

ż

Ω

Dk
p∇hq ¨Dkuτ dxdτ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ż

Ω

Dk
p∇hptqq ¨Dkuptq dx

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ż

Ω

Dk
p∇hp0qq ¨Dkup0q dx

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

ˆ

B

Bτ
Dk
p∇hpτqq

˙

¨Dkupτq dxdτ
ˇ

ˇ

ˇ
.

Using Young’s Inequality on the first two terms and substituting the re-arranged h

perturbation equation in for ht yields that, in particular,

I2 ď
ε

2

∥∥Dk`1hptq
∥∥2

L2pΩq
`

1

2ε

∥∥Dkuptq
∥∥2

L2pΩq
`
ε

2

∥∥Dk`1h0

∥∥2

L2pΩq
`

1

2ε

∥∥Dku0

∥∥2

L2pΩq

`

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

Dku ¨Dk∇pR0 ´ u ¨∇h´ h0∇ ¨ uq dxdτ
ˇ

ˇ

ˇ

ď
ε

2

∥∥Dk`1hptq
∥∥2

L2pΩq
`

1

2ε

∥∥Dkuptq
∥∥2

L2pΩq
`
∥∥Dk`1h0

∥∥2

L2pΩq
`
∥∥Dku0

∥∥2

L2pΩq

`

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

Dku ¨Dk∇pR0 ´ u ¨∇h´ h0∇ ¨ uq dxdτ
ˇ

ˇ

ˇ

Now, note that, using Young’s Inequality (ε “ 1) and integrating by parts,

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

Dku ¨Dk∇pR0 ´ u ¨∇h´ h0∇ ¨ uq dxdτ
ˇ

ˇ

ˇ

ď

t
ż

0

ż

Ω

ˆ

1

2
pDkuq ¨ pDkuq `

1

2
ppDk

p∇R0q ¨ pD
k
p∇R0qq

˙

dxdτ

`

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

Dku ¨Dk
p∇pu ¨∇hqq dxdτ

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
h0

t
ż

0

ż

BΩ

Dk
p∇uqDku ¨ n dxdτ

´ h0

t
ż

0

ż

Ω

Dk
p∇uq ¨Dk

p∇uq dxdτ
ˇ

ˇ

ˇ
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ď

t
ż

0

ˆ ∥∥Dkupτq
∥∥2

L2pΩq
`
∥∥Dk`1R0pτq

∥∥2

L2pΩq

`

ˇ

ˇ

ˇ

ż

Ω

Dku ¨Dk
p∇pu ¨∇hqq dx

ˇ

ˇ

ˇ
` h0

∥∥Dk`1upτq
∥∥2

L2pΩq

˙

dτ,

where the integral term over BΩ vanishes from the boundary conditions. Additionally,

by utilizing the Leibniz Rule as earlier, the integral term is bounded by AN3p0, tq,

for some time-independent constant A. Thus,

I2 ď
ε

2

∥∥Dk`1hptq
∥∥2

L2pΩq
`

1

2ε

∥∥Dkuptq
∥∥2

L2pΩq
`
ε

2

∥∥Dk`1h0

∥∥2

L2pΩq
`

1

2ε

∥∥Dku0

∥∥2

L2pΩq

`

ˇ

ˇ

ˇ

t
ż

0

ż

Ω

Dku ¨Dk∇pR0 ´ u ¨∇h´ h0∇ ¨ uq dxdτ
ˇ

ˇ

ˇ

ď
ε

2

∥∥Dk`1hptq
∥∥2

L2pΩq
`

1

2ε

∥∥Dkuptq
∥∥2

L2pΩq
`
ε

2

∥∥Dk`1h0

∥∥2

L2pΩq
`

1

2ε

∥∥Dku0

∥∥2

L2pΩq

`

t
ż

0

´∥∥Dkupτq
∥∥2

L2pΩq
`
∥∥Dk`1R0pτq

∥∥2

L2pΩq
` h0

∥∥Dk`1upτq
∥∥2

L2pΩq

¯

dτ ` AN3
p0, tq.

Choosing constants appropriately yields that

I2 ď
ε

2

∥∥Dk`1hptq
∥∥2

L2pΩq
`

1

2ε

∥∥Dkuptq
∥∥2

L2pΩq
`
∥∥Dk`1h0

∥∥2

L2pΩq
`
∥∥Dku0

∥∥2

L2pΩq

`

t
ż

0

´∥∥Dkupτq
∥∥2

L2pΩq
`
∥∥Dk`1R0pτq

∥∥2

L2pΩq
` h0

∥∥Dk`1upτq
∥∥2

L2pΩq

¯

dτ ` AN3
p0, tq

ď ε
∥∥Dk`1hpτq

∥∥2

L2pΩq
`
K2

ε

´∥∥Dk`1h0

∥∥2

L2pΩq
`
∥∥Dku0

∥∥2

L2pΩq
`
∥∥Dkuptq

∥∥2

L2pΩq

¯

`K3

t
ż

0

´∥∥Dkupτq
∥∥2

1
`
∥∥Dk`1R0pτq

∥∥2

L2pΩq

¯

dτ `K4N
3
p0, tq,

where K2, K3, K4 are time-independent constants. We have established the required

estimates. Plugging them into (3.7),

1

2

∥∥Dk`1h
∥∥2

L2pΩq
`

t
ż

0

∥∥Dk`1h
∥∥2

L2pΩq
dτ ď

1

2

∥∥Dk`1h0

∥∥2

L2pΩq
` 2ε

t
ż

0

∥∥Dk`1h
∥∥2

L2pΩq
dτ
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`
1

2ε

t
ż

0

´∥∥Dk`1R0

∥∥2

L2pΩq
`
∥∥DkR

∥∥2

L2pΩq
` h0

∥∥Dk`2u
∥∥2

L2pΩq
` λ

∥∥Dk`4u
∥∥2

L2pΩq

¯

dτ

` I1 ` I2

ď
1

2

∥∥Dk`1h0

∥∥2

L2pΩq
` 2ε

t
ż

0

∥∥Dk`1h
∥∥2

L2pΩq
dτ `

1

2ε

t
ż

0

ˆ ∥∥Dk`1R0

∥∥2

L2pΩq
`
∥∥DkR

∥∥2

L2pΩq

h0

∥∥Dk`2u
∥∥2

L2pΩq
` λ

∥∥Dk`4u
∥∥2

L2pΩq

˙

dτ `K1N
3
p0, tq ` ε

∥∥Dk`1hpτq
∥∥2

L2pΩq

`
K2

ε

´∥∥Dk`1h0

∥∥2

L2pΩq
`
∥∥Dku0

∥∥2

L2pΩq
`
∥∥Dkuptq

∥∥2

L2pΩq

¯

`K3

t
ż

0

´∥∥Dkupτq
∥∥2

1
`
∥∥Dk`1R0pτq

∥∥2

L2pΩq

¯

dτ `K4N
3
p0, tq.

Now, we merely re-arrange terms, choose epsilons appropriately, choose a constant

C large enough, then sum over the k1s.

Next, we establish an estimate on the norm of u and its time integral.

Lemma 3.3.

‖h‖2
5 ` ‖u‖2

6 ` λ

t
ż

0

‖Du‖2
7 dτ ď C

ˆ

‖h0‖2
5 ` ‖u0‖2

6 `N
3
p0, tq

`

t
ż

0

`

‖R0‖2
5 ` ‖R‖2

6 ` ε ‖Dh‖
2
4 dτ

˘

˙

,

where C is a time-independent constant, and ε ą 0 comes from Young’s Inequality.

Proof of Lemma (3.3). For k “ 0, 1, 2, 3, 4 and 5, we will take the inner product of

Dkh and DkL0, add it to the inner product of Dku and h0D
kL, then integrate over

time. So, let k P t0, 1, 2, 3, 4, 5u be arbitrary. Then, in a process similar to Lemma

2, we compute
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t
ż

0

ż

Ω

`

DkhDkL0 `D
ku ¨DkL

˘

dxdτ

“

t
ż

0

ż

Ω

`

DkhDk
`

hτ ` u ¨∇h` h0∇ ¨ u
˘

`Dku ¨ h0D
k
`

uτ ` λ∇4u`∇h
˘˘

dxdτ

“
1

2

´∥∥Dkh
∥∥2

L2pΩq
´
∥∥Dkh0

∥∥2

L2pΩq
`
∥∥Dku

∥∥2

L2pΩq
´
∥∥Dku0

∥∥2

L2pΩq

¯

`

t
ż

0

ż

Ω

`

DkhDk
`

u ¨∇h` h0∇ ¨ u
˘

`Dku ¨ h0D
k
`

λ∇4u`∇h
˘˘

dxdτ

“

t
ż

0

ż

Ω

`

DkhDkR0 `D
ku ¨ h0D

kR
˘

dxdτ.

Note that the terms

t
ż

0

ż

Ω

DkhDk
ph0∇ ¨ uq dxdτ and

t
ż

0

ż

Ω

Dku ¨ h0D
k
p∇hq dxdτ will

cancel each other after integrating one of them by parts over Ω. Also, integrating

the biharmonic term by parts twice and applying the periodic boundary conditions

yields that

λ

t
ż

0

ż

Ω

DkuDk∇4udxdτ “ λ

t
ż

0

ż

Ω

Dk∇2u ¨Dk∇2udxdτ “ λ

t
ż

0

∥∥Dk∇2u
∥∥2

L2pΩq
dτ.

Re-arranging terms and scaling yields, for some time-independent constant C, that

∥∥Dkh
∥∥2

L2pΩq
`
∥∥Dku

∥∥2

L2pΩq
` λ

t
ż

0

∥∥∇2u
∥∥2

L2pΩq
dτ

ď C

ˆ∥∥Dkh0

∥∥2

L2pΩq
`
∥∥Dku0

∥∥2

L2pΩq
`

t
ż

0

ż

Ω

`

|Dkh|
`

|Dk
pu ¨∇hq| ` |DkR0|

˘

` |Dku ¨DkR|
˘

dxxdτ

˙

.

For the first integral term, we follow a similar process to that in Lemma 2, integrating

by parts for higher k to reduce the order of integration on h. As such, the term will
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be bounded by KN3p0, tq, some time-independent constant K. For the other two

terms, we will use Young’s Inequality for ε1, ε2 ą 0. Applying the above, we obtain

that

∥∥Dkh
∥∥2

L2pΩq
`
∥∥Dku

∥∥2

L2pΩq
` λ

t
ż

0

∥∥Dk∇2u
∥∥2

L2pΩq
dτ

ď C

ˆ ∥∥Dkh0

∥∥2

L2pΩq
`
∥∥Dku0

∥∥2

L2pΩq
`N3

p0, tq

`

t
ż

0

ˆ

ε1
2

∥∥Dkh
∥∥2

L2pΩq
`

1

2ε1

∥∥DkR0

∥∥
L2pΩq

˙

dτ

`

t
ż

0

ˆ

ε2
2

∥∥Dku
∥∥2

L2pΩq
`

1

2ε2

∥∥DkR
∥∥2

L2pΩq

˙

dτ

˙

.

Summing from k “ 0 to k “ 5 and applying the Poincaré Inequality on u,

‖h‖2
5 ` ‖u‖2

5 ` λ

t
ż

0

∥∥∇2u
∥∥2

5
dτ

ď C

ˆ

‖h0‖2
5 ` ‖u0‖2

5 `N
3
p0, tq `

t
ż

0

ˆ

ε1
2
‖h‖2

5 `
1

2ε1
‖R0‖2

5

˙

dτ

`

t
ż

0

ˆ

ε2
2
‖Du‖2

5 `
1

2ε2
‖R‖2

5

˙

dτ

˙

.

Applying the elliptic estimate present in Corollary (A.1), taking an appropriate

choice of ε2, and making terms larger allow us to conclude that

‖h‖2
5 ` ‖u‖2

5 ` λ

t
ż

0

‖Du‖2
6 dτ

ď C

ˆ

‖h0‖2
5 ` ‖u0‖2

5 `N
3
p0, tq `

t
ż

0

ˆ

ε1
2
‖h‖2

5 `
1

2ε1
‖R0‖2

5

˙

dτ `

t
ż

0

‖R‖2
5 dτ

˙

.

When k “ 6, we perform a similar process to the above, but only the estimate on
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the momentum equations, providing us with a similar estimate (in that we pick up

no new terms). This calculation is nearly identical to how we estimated the quantity

previously, modulo a substitution of a minor re-arrangement of the height equation

in (3.1), so we omit it. Combining the results and applying the Poincaré Inequality

in h yields that

‖h‖2
5 ` ‖u‖2

6 ` λ

t
ż

0

‖Du‖2
7 dτ ď C

ˆ

‖h0‖2
5 ` ‖u0‖2

6 `N
3
p0, tq

`

t
ż

0

`

‖R0‖2
5 ` ‖R‖2

6 ` ε ‖Dh‖
2
4 dτ

˘

˙

.

Remark 3.5. When we connect the lemmas together, the left-hand side of the

inequality will consist of energy norm terms. We will take ε appropriately such

that ε

t
ż

0

‖Dh‖4 dτ can be moved over from the right to the left, then we will rescale,

effectively removing this term. This will also be the last estimate used on terms

from the left-hand side of (3.1). Hence, without loss of generality, we will remove

this term when applying the above lemma. 4

The next lemma obtains an estimate on the time derivative of the height and

its time integral.

Lemma 3.4.

‖ht‖2
5 ď C1

`

‖R0‖2
5 `N

3
p0, tq ` ‖Du‖2

5

˘

and
t
ż

0

‖hτ‖2
5 dτ ď C2

¨

˝

t
ż

0

p‖Du‖2
7 ` ‖R0‖2

5qdτ `N
3
p0, tq

˛

‚,

where C1 and C2 are time-independent constants.

Proof of Lemma (3.4). For the first estimate, let k run from 0 to 5. Then, applying

Young’s Inequality for ε ą 0,
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∥∥Dkht
∥∥2

L2pΩq
“

ż

Ω

DkhtD
kht dx “

ż

Ω

DkhtD
k
pR0 ´ h0p∇ ¨ uq ´ u ¨∇hq dx

ď
3ε

2

∥∥Dkht
∥∥
L2pΩq

`
1

2ε

∥∥DkR0

∥∥2

L2pΩq
`
h0

2ε

∥∥Dk`1u
∥∥2

L2pΩq

`

ˇ

ˇ

ˇ

ż

Ω

DkhtD
k
pu ¨∇hqdx

ˇ

ˇ

ˇ
.

In a manner similar to Lemma (3.2), one can show that

ˇ

ˇ

ˇ

ż

Ω

DkhtD
k
pu ¨∇hq dx

ˇ

ˇ

ˇ
ď KN3

p0, tq,

some time-independent constantK, for all k P t0, 1, 2, 3, 4, 5u (note that it will require

integrating by parts for k “ 5). Hence, by picking epsilon small enough, scaling, and

making the u term larger, we have that

∥∥Dkht
∥∥2

L2pΩq
ď C1

´∥∥DkR0

∥∥2

L2pΩq
`N3

p0, tq `
∥∥Dk`1u

∥∥
L2pΩq

¯

.

Summing over k, we have that

‖ht‖2
5 ď C1

`

‖R0‖5 `N
3
p0, tq ` ‖Du‖5

˘

.

The time-integrated estimate is performed similarly.

Now, we do the same with the perturbed velocity.

Lemma 3.5.

‖ut‖2
2 ď C1

`

‖R‖2
5 ` λ ‖Du‖2

5 `N
3
p0, tq ` ‖Dh‖2

4

˘

,

and
t
ż

0

‖uτ‖2
4 dτ ď C2

¨

˝

t
ż

0

p‖R‖2
6 ` λ ‖Du‖7 ` ‖Dh‖2

4qdτ `N
3
p0, tq

˛

‚,

where C1 and C2 are time-independent constants.

Proof of Lemma (3.5). We proceed as in Lemma (3.4), but here k P t0, 1, 2u for the
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first estimate, and through 4 in the second. We apply Young’s Inequality with ε ą 0

to the quantity, obtaining

∥∥Dkut
∥∥
L2pΩq

“

ż

Ω

pDkut ¨D
kutq dx “

ż

Ω

Dkut ¨D
k
pR´ λ∇4u´∇hq dx

ď
3ε

2

∥∥Dkut
∥∥2

L2pΩq
`

1

2ε

∥∥DkR
∥∥2

L2pΩq
`
λ

2ε

∥∥Dk∇4u
∥∥
L2pΩq

`
1

2ε

∥∥Dk`1h
∥∥2

L2pΩq
.

Applying this bound, choosing an appropriate ε, scaling, applying the Poincaré In-

equality to the velocity, and making terms larger leaves us with

∥∥Dkut
∥∥2

L2pΩq
ď C1

´∥∥DkR
∥∥2

L2pΩq
` λ

∥∥Dk`1u
∥∥2

3
`
∥∥Dk`1h

∥∥2

2

¯

,

some time-independent constant C1. Summing over the k’s and making terms larger

yields the first estimate. The second estimate follows similarly.

The next two lemmas involve bounding the right-hand side of the h perturbation

equation, up to a time t.

Lemma 3.6.

sup
tPr0,ts

‖R0‖2
5 ď CpN2

p0, tq ` ‖DV ‖2
5qN

2
p0, tq,

where C is a time-independent constant.

Proof of Lemma (3.6). Utilizing the Banach algebra norm property of H5pΩq and

the Poincaré inequality on the quantity h0 ´ ĥ “ V ´ V ,

sup
τPr0,ts

‖R0‖2
5 “ sup

τPr0,ts

!
∥∥∥ph0 ´ h´ ĥq∇ ¨ u´ u ¨∇ĥ

∥∥∥2

5

)

ď sup
τPr0,ts

!

‖h∇ ¨ u‖2
5 `

∥∥∥ph0 ´ ĥq∇ ¨ u
∥∥∥2

5
`

∥∥∥u ¨∇ĥ∥∥∥2

5

)

ď C sup
τPr0,ts

!

ˆ

‖h‖2
5 `

∥∥∥h0 ´ ĥ
∥∥∥2

5
`

∥∥∥∇ĥ∥∥∥2

5

˙

‖u‖2
6

)

ď C
`

N2
p0, tq ` ‖DV ‖2

5

˘

N2
p0, tq,

29



where C is a time-independent constant dependent the parameters from the Banach

Algebra norm property and the Poincaré Inequality.

Lemma 3.7.
t
ż

0

‖R0‖2
5 dτ ď CpN2

p0, tq ` ‖DV ‖2
5qN

2
p0, tq,

where C is a time-independent constant.

Proof of Lemma (3.7). We follow a similar process to the above. Utilizing the Ba-

nach algebra property of H5pΩq and the Poincaré Inequality on u,

t
ż

0

‖R0‖2
5 dτ “

t
ż

0

ˆ∥∥∥ph0 ´ h´ ĥq∇ ¨ u´ u ¨∇ĥ
∥∥∥2

5

˙

dτ

ď

t
ż

0

ˆ

‖h∇ ¨ u‖2
5 `

∥∥∥ph0 ´ ĥq∇ ¨ u
∥∥∥2

5
`

∥∥∥u ¨∇ĥ∥∥∥2

5

˙

dτ

ď C

t
ż

0

ˆˆ

‖h‖2
5 `

∥∥∥h0 ´ ĥ
∥∥∥2

5
`

∥∥∥∇ĥ∥∥∥2

5

˙

‖u‖2
6

˙

dτ

ď C

t
ż

0

``

‖h‖2
5 ` ‖DV ‖2

5

˘

‖u‖2
5

˘

dτ

ď C sup
τPr0,ts

!

‖h‖2
5 ` ‖DV ‖2

5

)

t
ż

0

‖Du‖2
7 dτ

ď C
`

N2
p0, tq ` ‖DV ‖2

5

˘

N2
p0, tq,

where C is a time independent constant depending on parameters stemming from

the Poincaré inequality on u and the Banach algebra norm property on H5pΩq.

Lemma 3.8.

sup
τPr0,ts

‖R‖2
5 ď CN4

p0, tq,

where C is a time-independent constant.

Proof of Lemma (3.8). Using the Banach algebra norm property of H5pΩq, we com-
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pute that

sup
τPr0,ts

‖R‖2
5 “ sup

τPr0,ts

 

‖´pu ¨∇qu‖2
5

(

ď C sup
τPr0,ts

!

‖u‖2
5 ‖Du‖2

5

)

ď CN4
p0, tq.

where C is a time-independent constant depending on the parameters present in

the conditions of the Banach algebra norm property of H5pΩq, which proves the

result.

Lemma 3.9.
t
ż

0

‖R‖2
6 dτ ď CN4

p0, tq,

where C is a time-independent constant.

Proof of Lemma (3.9). Utilizing the Banach algebra property of H6pΩq,

t
ż

0

‖R‖2
6 dτ “

t
ż

0

‖´pu ¨∇qu‖2
6 dτ

ď C

t
ż

0

‖u‖2
6 ‖Du‖2

7 dτ

ď C sup
τPr0,ts

‖u‖2
6

t
ż

0

‖Du‖2
7 dτ

ď CN4
p0, tq,

where C is a time-independent constant that depends on the parameters present in

the conditions of the Banach algebra norm property of H6pΩq.

We are ready to prove Proposition (3.3).
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Proof of Proposition (3.3). Consider the quantity

Eptq “ ‖h‖2
5`‖ht‖

2
5`‖u‖

2
6`‖ut‖

2
2`

t
ż

0

`

‖Dhpτq‖2
4 ` ‖hτ pτq‖2

5 ` ‖Dupτq‖2
7 ` ‖uτ pτq‖2

4

˘

dτ.

Applying, in order, Lemmas (3.4), (3.5), (3.2), and (3.3) (with Lemma (3.1) used

throughout) and making terms larger when necessary,

Eptq ď C

ˆ

‖Dh‖2
4 ` ‖ht‖2

5 ` ‖u‖2
6 ` ‖ut‖2

2

`

t
ż

0

`

‖Dhpτq‖2
4 ` ‖hτ pτq‖2

5 ` ‖Dupτq‖2
7 ` ‖uτ pτq‖2

4

˘

dτ

˙

ď C

ˆ

‖Dh‖2
4 ` ‖R0‖2

5 ` ‖u‖2
6 ` ‖ut‖2

2 `N
3
p0, tq

`

t
ż

0

`

‖Dhpτq‖2
4 ` ‖R0pτq‖2

5 ` ‖Dupτq‖2
7 ` ‖uτ pτq‖2

4

˘

dτ

˙

ď C

ˆ

‖Dh‖2
4 ` ‖R0‖2

5 ` ‖Du‖2
5 ` ‖R‖2

5 `N
3
p0, tq

`

t
ż

0

`

‖Dhpτq‖2
4 ` ‖R0pτq‖2

5 ` ‖Dupτq‖2
7 ` ‖Rpτq‖2

6

˘

dτ

˙

ď C

ˆ

‖h‖2
5 ` ‖Dh0‖2

4 ` ‖Du0‖2
5 ` ‖R0‖2

5 ` ‖Du‖2
5 ` ‖R‖2

5 `N
3
p0, tq

`

t
ż

0

`

‖R0pτq‖2
5 ` ‖Dupτq‖2

7 ` ‖Rpτq‖2
6

˘

dτ

˙

ď C

ˆ

‖Dh0‖2
4 ` ‖Du0‖2

5 ` ‖R0‖2
5 ` ‖R‖2

5 `N
3
p0, tq

`

t
ż

0

`

‖R0pτq‖2
5 ` ‖Rpτq‖2

6

˘

dτ

˙

.
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Taking the supremum over the interval r0, T s yields that

N2
p0, T q ď C

ˆ

‖Dh0‖2
4 ` ‖Du0‖2

5 ` sup
tPr0,T s

 

‖R0ptq‖2
5 ` ‖Rptq‖2

5

(

`N3
p0, T q

`

T
ż

0

`

‖R0pτq‖2
5 ` ‖Rpτq‖2

6

˘

dτ

˙

From Lemmas (3.6)-(3.9),

N2
p0, T q ď C

ˆ

‖Dh0‖2
4 ` ‖Du0‖2

5 `N
3
p0, T q `N2

p0, T q
`

N2
p0, T q ` ‖DV ‖2

5

˘

˙

“ C
`

‖Dh0‖2
4 ` ‖Du0‖2

5

˘

` CN2
p0, T q

`

Np0, T q `N2
p0, T q ` ‖DV ‖2

5

˘

Take ε1 “ inftE1ph0q, E2ph0q, tz : Cpz ` 2z2q ă 1{2uu (i.e. making the initial data

small enough) and C1 “

d

C

1´ Cpε1 ` 2ε21q
. Hence, by re-arranging terms and letting

Np0, T q ď ε1 and ‖DV ‖5 ď ε1 yields that

N2
p0, T q ď C2

1

`

‖Dh0‖2
4 ` ‖Du0‖2

5

˘

ď C2
1N

2
p0, 0q.

Squaring both sides yields the desired result.

Now, we are ready to prove the main theorem.

Proof of Theorem (2.1). First, we show that the energy norm is bounded for all time.

Take the initial data to be small enough so that

Np0, 0q ď min

#

ε1,
ε1
C0

,
ε1

C1

a

1` C2
0

+

“ δ

and

‖DV ‖5 ď δ ď ε1.

We will demonstrate that Np0, nτq ď ε1 for all n P N. We proceed inductively. We

start with the base case. Let T “ 0 in Proposition (3.2). Then, C0, ε0, τ exist so that

Np0, τq ď C0Np0, 0q ď ε0

b

1` C2
0 ď E2ph0q.
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Hence, Proposition (3.3) applies with T “ τ , providing us with the constants ε1 and

C1 so that

Np0, τq ď C0Np0, 0q ď ε1.

This proves the base case.

Inductively, suppose that Np0, nτq ď ε1 for n P N. We wish to apply Proposition

(3.3) with T “ nτ . Note that

Npnτ, nτq ď Np0, nτq ď ε1 ď ε0 ď ε0

b

1` C2
0 ď E2ph0q.

Since everything is still sufficiently small (by assumption), we can apply Proposition

(3.3) to conclude that

Np0, nτq ď C1Np0, 0q.

By inductive hypothesis, we can now apply Proposition (3.2) with T “ nτ , which

yields that ph,uq as a doubly-periodic solution up to time pn` 1qτ so that

Npnτ, pn` 1qτq ď C0Npnτ, nτq.

Now, we have that

N2
p0, pn` 1qτq ď N2

p0, nτq `N2
pnτ, pn` 1qτq ď p1` C2

0qN
2
p0, nτq.

In particular,

Np0, pn` 1q, τq ď
b

1` C2
0Np0, nτq ď C1

b

1` C2
0Np0, 0q ď ε1,

which proves the result by induction.

Taking the limit as nÑ 8 returns that Np0,8q ď ε1. Hence, the energy norm

is bounded for all time by ε1. Applying Proposition (A.3) yields that

lim
tÑ8

‖hptq‖5 “ 0

and

lim
tÑ8

‖uptq‖2 “ 0.
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The asymptotic convergence now follows for h from the Poincaré Inequality and the

embedding H5pΩq ãÑ C3,αpΩq and for u from the embedding H2pΩq ãÑ CαpΩq.
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4

Conclusions and Future Work

We have shown that, given the local existence of a solution to the biharmonic

SWE, we can extend the interval of existence infinitely via a priori estimates on the

growth of the energy norm, allowing us to conclude that our solution pair converges

to its steady-state. This helps provide justification for numerical simulations of

the biharmonic shallow water equations under appropriately-small initial data and

forcing considerations.

There is a myriad of potential future work. Completing the local existence ar-

gument is the most immediate follow-up. Another clear extension to this work is

to prove the analogous result for the operator ∇2ph∇2uq, some of which has been

included in this paper. One could also study domain generalizations, in which case

boundary estimates, such as those contained in [6] and [7], are required. This would

also allow considerations of more interesting boundary conditions. Forcing gener-

alizations are also viable extensions. One could study if a similar result could be

obtained exclusively through appropriate control of the viscosity parameter (with

reasonable data assumptions). We neglected to drop the viscosity parameter through

many lemmas for this particular purpose. A final extension to our work is to inves-

tigate a similar result using the α-model.
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Appendix A

Appendix

We need an appropriate elliptic estimate for the proof of Lemma (3.3). This

proposition is a modification of Theroem 8.3 in [8]. Here, we see a significant benefit

of working with doubly-periodic functions defined over L2´Sobolev spaces; Fourier

analysis becomes a viable mechanism. Noting that ∇2 clearly satisfies the ellipticity

condition, we have the following proposition.

Proposition A.1. For all k ě 0,

‖Du‖k`1 ď
∥∥∇2u

∥∥
k

for all u P Hk`2pTnq.

Proof of Proposition (A.1). Without loss of generality, we will only consider the case

when u P H2pTnq (otherwise, we will follow a similar process, with application of the

binomial theorem). Letting k “ pk1, k2q, we can write

u “
ÿ

k1

ÿ

k2

cke
ik¨x,

where ck denote the Fourier coefficients

ck “
1

p2πqn

ż

Tn

upx1qe´ik¨x
1

dx1.
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Differentiating,

Dju “
ÿ

k1

ÿ

k2

ckkje
ik¨x,

so and ∇2u will be given by

∇2u “
ÿ

k1

ÿ

k2

ck|k|
2eik¨x.

Now, using equivalent norms,

‖Du‖2
1 “ p2πq

n
ÿ

k1

ÿ

k2

|ck|pk1 ` k2 ` k
2
1 ` k

2
2q ď p2πq

n
ÿ

k1

ÿ

k2

|ck|pk1 ` k2 ` k
2
1 ` k

2
2 ` 2k1k2q

ď C1

ÿ

k1

ÿ

k2

|ck|pk1 ` k2q
2
ď C2

ÿ

k1

ÿ

k2

|ck|pk
2
1 ` k

2
2q

“ C2

∥∥∇2u
∥∥2

L2pΩq
,

where C1, C2 P R` are constants, by using the simple fact that px`yq2 ď Kpx2`y2q

(in fact, K “ 2.) For higher k, one utilizes the same process, with the addition of

an application of the binomial theorem, which we omit.

Corollary A.1. Define u as in (3.1). Then,

t
ż

0

‖Du‖7 dτ ď

t
ż

0

C
∥∥∇2u

∥∥2

6
dτ

some C P R`.

Proof. Merely note that Ω “ p0, 1qˆp0, 1q – T2, apply Proposition (A.1) with k “ 6,

then integrate in time. Note that this is true for all k from 0 through 6.

In order to encourage future work with the operator ∇2ph∇2uq, we provide an

important tool in estimating the right-hand side of the perturbed momentum equa-

tions, as well as an example estimate. Let h be defined as in (3.1), with the constraint

(3.6) given in Proposition (3.3). Then, we can obtain the following estimate.
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Proposition A.2. Let h̃ “ h` ĥ be defined as described above. Then, for k “ 4,

∥∥∥h̃´1
∥∥∥2

k
ď C

k
ÿ

l“0

∥∥∥Dh̃∥∥∥2l

k
,

where C is a time-independent constant.

Recall that the notation h̃´1 is defined to be 1
h̃
.

Proof of Proposition (A.2). We will only prove this for k “ 0, 1, 2, since all cases

after k “ 2 contain similar details. First, let k “ 0. Then,∥∥∥h̃´1
∥∥∥2

L2pΩq
“

ż

Ω

ph̃´1
q
2 dx ď C,

using (3.5).

Next, let k “ 1. Then, again using (3.5),∥∥∥h̃´1
∥∥∥2

1
“

ż

Ω

ph̃´1
q
2 dx`

ż

Ω

pDph̃´1
qq

2 dx

ď C `

ż

Ω

˜

Dh̃

h̃

¸2

dx ď Cp1`

ż

Ω

pDh̃q2 dx

“ C

ˆ

1`
∥∥∥Dh̃∥∥∥2

L2pΩq

˙

ď C

ˆ

1`
∥∥∥Dh̃∥∥∥2

1

˙

“ C
1
ÿ

l“0

∥∥∥Dh̃∥∥∥2l

k
.

Let k “ 2. Once again, using (3.5), we can establish that∥∥∥h̃´1
∥∥∥2

2
“

ż

Ω

ph̃´1
q
2 dx`

ż

Ω

pDph̃´1
qq

2 dx`

ż

Ω

pD2
ph̃´1

qq
2 dx

ď C ` C
∥∥∥Dh̃∥∥∥2

L2pΩq
`

ż

Ω

˜

h̃D2h̃´ pDh̃q2

h̃2

¸2

dx

ď C ` C
∥∥∥Dh̃∥∥∥2

2
`

ż

Ω

˜

D2h̃

h̃

¸2

dx`

ż

Ω

˜

Dh̃

h̃

¸4

dx`
ˇ

ˇ

ˇ
2

ż

Ω

D2h̃pDh̃q2

h̃3
dx

ˇ

ˇ

ˇ
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“ C ` C
∥∥∥Dh̃∥∥∥2

2
`

∥∥∥D2h̃
∥∥∥2

L2pΩq
`

ż

Ω

˜

Dh̃

h̃

¸4

dx`
ˇ

ˇ

ˇ
2

ż

Ω

D2h̃pDh̃q2

h̃3
dx

ˇ

ˇ

ˇ
.

Call these last two integral terms I1 and I2, respectively (from left to right). We

will bound them separately, then apply them to the above.

Using that H2pΩq is a Banach Algebra (see [1], Theorem 5.23) and (3.5), we

have that

I1 “

ż

Ω

˜

Dh̃

h̃

¸4

dx “

ż

Ω

¨

˝

˜

Dh̃

h̃

¸2
˛

‚

2

dx ď C

ż

Ω

ˆ

´

Dh̃
¯2
˙2

“ C
∥∥∥Dh̃Dh̃∥∥∥2

L2pΩq

ď C
∥∥∥Dh̃Dh̃∥∥∥2

2
ď C

∥∥∥Dh̃∥∥∥2

2

∥∥∥Dh̃∥∥∥2

2
“ C

∥∥∥Dh̃∥∥∥4

2
,

where C is a time-independent constant on the parameters coming from the Banach

algebra norm property on H2pΩq.

For I2, note that, using (3.5), Young’s Inequality (with, say ε “ 1), Hölder’s

Inequality, and the Banach Algebra Property of H2pΩq (in that order),

I2 “

ˇ

ˇ

ˇ
2

ż

Ω

D2h̃pDh̃q2

h̃3
dx

ˇ

ˇ

ˇ
ď C sup

xPΩ
|pDh̃q2|

ż

Ω

|D2h̃| dx ď C
∥∥∥pDh̃q2∥∥∥

2

∥∥∥D2h̃
∥∥∥
L1pΩq

ď C

ˆ∥∥∥pDh̃q2∥∥∥2

2
`

∥∥∥D2h̃
∥∥∥2

L1pΩq

˙

ď C

ˆ∥∥∥Dh̃∥∥∥4

2
`

∥∥∥D2h̃
∥∥∥2

L2pΩq

˙

ď C

ˆ∥∥∥Dh̃∥∥∥4

2
`

∥∥∥Dh̃∥∥∥2

2

˙

,

where C is a time-independent constant depending on our choice of ε and the Banach

algebra norm property.

Plugging in our estimates,∥∥∥h̃´1
∥∥∥2

2
ď C ` C

∥∥∥Dh̃∥∥∥2

2
`

∥∥∥D2h̃
∥∥∥2

L2pΩq
` C

∥∥∥Dh̃∥∥∥4

2
` C

ˆ∥∥∥Dh̃∥∥∥2

2
`

∥∥∥Dh̃∥∥∥4

2

˙

ď C

ˆ

1`
∥∥∥Dh̃∥∥∥2

2
`

∥∥∥Dh̃∥∥∥4

2

˙

“ C
2
ÿ

l“0

∥∥∥Dh̃∥∥∥2l

2
.

Following a similar process for k “ 3, 4 provides the desired result.
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Our example estimate will demonstrate how to utilize the above to obtain a

bound on the R from (3.2) up to, say, the H3-norm:

Lemma A.1.

sup
τPr0,ts

‖R‖2
3 ď CN2

p0, tq
4
ÿ

l“1

´

N2l
p0, tq ` ‖DV ‖2l

5

¯

,

where C is a time-independent constant.

Proof of Lemma (A.1). Using the Banach algebra norm property of H3pΩq, Propo-

sition (A.2), and the triangle inequality, we compute that

sup
τPr0,ts

‖R‖2
3 “ sup

τPr0,ts

#∥∥∥∥pu ¨∇qu´ λ

h` ĥ
∇2
ph` ĥq∇2u´

2λ

h` ĥ
∇3u∇ph` ĥq

∥∥∥∥2

3

+

ď C sup
τPr0,ts

!

‖u‖2
6 ‖Du‖2

3 ` λ
∥∥∥∇2

ph` ĥq
∥∥∥2

3

∥∥∥ph` ĥq´1
∥∥∥2

3

∥∥∇2u
∥∥2

3

` 2λ
∥∥∇3u

∥∥2

3

∥∥∥∇ph` ĥq∥∥∥2

3

∥∥∥ph` ĥq´1
∥∥∥2

3

)

ď C sup
τPr0,ts

!∥∥∇3u
∥∥2

3

`

‖u‖2
6 ` λ

∥∥∥∇2
ph` ĥq

∥∥∥2

3

∥∥∥ph` ĥq´1
∥∥∥2

3

` 2λ
∥∥∇3u

∥∥2

3

∥∥∥∇ph` ĥq∥∥∥2

3

∥∥∥ph` ĥq´1
∥∥∥2

3

˘

)

ď CN2
p0, tq sup

τPr0,ts

!

‖u‖2
6 ` λ

∥∥∥∇2
ph` ĥq

∥∥∥2

3

3
ÿ

l“0

∥∥∥Dph` ĥq∥∥∥2l

3

` 2λ
∥∥∥∇ph` ĥq∥∥∥2

3

3
ÿ

l“0

∥∥∥Dph` ĥq∥∥∥2l

3

)

ď CN2
p0, tq sup

τPr0,ts

!

‖u‖2
6 ` λ

∥∥∥∇2
ph` ĥq

∥∥∥2

3

3
ÿ

l“0

∥∥∥D2
ph` ĥq

∥∥∥2l

3

` 2λ
∥∥∥∇ph` ĥq∥∥∥2

3

3
ÿ

l“0

∥∥∥Dph` ĥq∥∥∥2l

3

)

ď CN2
p0, tq sup

τPr0,ts

!

‖u‖2
6 ` λ

4
ÿ

l“1

∥∥∥D2
ph` ĥq

∥∥∥2l

3
` 2λ

4
ÿ

l“1

∥∥∥Dph` ĥq∥∥∥2l

3

)

ď CN2
p0, tq sup

τPr0,ts

!

‖u‖2
6 ` λ

4
ÿ

l“1

∥∥D2h
∥∥2l

3
` λ

4
ÿ

l“1

∥∥∥D2ĥ
∥∥∥2l

3
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` 2λ
4
ÿ

l“1

‖Dh‖2l
3 ` 2λ

4
ÿ

l“1

∥∥∥Dĥ∥∥∥2l

3

)

ď CN2
p0, tq

ˆ

λ
4
ÿ

l“1

N2l
p0, tq ` λ

4
ÿ

l“1

∥∥D2V
∥∥2l

3

` 2λ
4
ÿ

l“1

N2l
p0, tq ` 2λ

4
ÿ

l“1

‖DV ‖2l
3

˙

ď CN2
p0, tq

4
ÿ

l“1

´

N2l
p0, tq ` ‖DV ‖2l

5

¯

,

where C is a time-independent constant depending on the parameters present in the

conditions of the Banach algebra norm property of H3pΩq and λ. which proves the

result.

In the proof of the main theorem, we require a result from elementary real

analysis.

Proposition A.3. Let f be a differentiable function on r0,8q such that

‖f 1ptq‖L2pr0,8qq ă 8. Then, limtÑ8 |fptq| “ 0.

Proof of Proposition (A.3). Let ptnq be a real-valued sequence so that tn Ñ 8 as

n Ñ 8. Then, applying the Fundamental Theorem of Calculus and the Cauchy-

Schwarz Inequality,

f 2
ptmq ´ f

2
ptnq “

tm
ż

tn

pf 2
pτqq1dτ

ď

tm
ż

tn

2|fpτq||f 1pτq|dτ

ď 2

¨

˝

tm
ż

tn

|fpτq|2dτ

˛

‚

1{2 ¨

˝

tm
ż

tn

|f 1pτq|2dτ

˛

‚

1{2

ď 2

¨

˝

8
ż

tn

|fpτq|2dτ

˛

‚

1{2 ¨

˝

8
ż

tn

|f 1pτq|2dτ

˛

‚

1{2

,
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for m ą n. As nÑ 8, tn Ñ 8, so the right-hand goes to zero. This proves that the

sequence pfpxnqq is Cauchy, and it can be shown that it has a limit of 0. Now, the

result follows directly from the sequential characterization of limits.
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